
The Giophantus proposal

Rene Peralta 1

1National Institute of Standards and Technology (Gaithersburg, USA)

NIST-internal PQC meeting
September 11th, 2018 (Gaithersburg, USA)

1/13



0.

The Giophantus proposal

Highlights:

I A public-key encryption scheme.

I Security based on the hardness of finding low-weight solutions
to certain indeterminate equations.

I Original system proposed around 2006 and broken around 2010,
this has a “fix” to cover known attacks.

I Most of the action happens in a quotient ring

Rq = Fq[t]/(tn−1).

I Uses bivariate polynomials (linear and quadratic, as far as I can
tell) over Rq.

2/13



0.

The public key

X(x, y) = a00 + a01x + a10y

3/13



0.

The public key

X(x, y) = a00 + a01x + a10y

ai,j = tn−1 + … + 431t + 22

4/13



0.

Parameters

Parameters:

I ` is a small integer (proposed value is 4).

I q a prime (around 230).

I n the number of terms in polynomials in t (around 2000).

5/13



0.

Private key

I The private key is a pair of polynomials

ux(t),uy (t)

of degree n−1 and coefficients in {0,1,2,3};

I These are picked at random, so I think you can just store the
seed to a prng.

6/13



0.

Connecting the private key and the public key

I In the public key

X (x ,y) = a00(t) +a01(t)x +a10(t)y

I the polynomials a01(t) and a10(t) are chosen at random in Rq;
I

a00(t) =−(a01(t)ux (t) +a10(t)uy (t)) ∈ Rq;

I so
X (ux (t),uy (t)) = 0.

7/13



0.

Encryption

I Message (in hex) is the coefficients of a polynomial m(t) of
degree n−1.

I Pick random polynomials rij in Rq. Let

r(x ,y) = r00(t) + r01(t)x + r10(t)y .

I Pick random (noise) polynomials eij of degree n−1 and
coefficients in {0,1,2,3}. Let

e(x ,y) = e00(t)+e01(t)x+e10(t)y +e11(t)xy +e02(t)x2+e20(t)y2.

I Ciphertext is

c(x ,y) = m(t) +X (x ,y)r(x ,y) + ` · e(x ,y).

8/13



0.

Decryption

I Evaluate c(x ,y) at (ux(t),uy (t)):

c(x ,y) = m(t) +X (x ,y)r(x ,y) + ` · e(x ,y).

I c(ux ,uy ) = m(t) +X (ux ,uy )r(ux ,uy ) + ` · e(ux ,uy ).

I c(ux ,uy ) = m(t) + ` · e(ux ,uy ).

I The coefficients of both summands are less than q. So you can
view this as a sum of polynomials over (Z ). Then m(t) is just
c(ux ,uy ) mod `.

9/13



0.

Decryption

I Evaluate c(x ,y) at (ux(t),uy (t)):

c(x ,y) = m(t) +X (x ,y)r(x ,y) + ` · e(x ,y).

I c(ux ,uy ) = m(t) +X (ux ,uy )r(ux ,uy ) + ` · e(ux ,uy ).

I c(ux ,uy ) = m(t) + ` · e(ux ,uy ).

I The coefficients of both summands are less than q. So you can
view this as a sum of polynomials over (Z ). Then m(t) is just
c(ux ,uy ) mod `.

9/13



0.

Decryption

I Evaluate c(x ,y) at (ux(t),uy (t)):

c(x ,y) = m(t) +X (x ,y)r(x ,y) + ` · e(x ,y).

I c(ux ,uy ) = m(t) +X (ux ,uy )r(ux ,uy ) + ` · e(ux ,uy ).

I c(ux ,uy ) = m(t) + ` · e(ux ,uy ).

I The coefficients of both summands are less than q. So you can
view this as a sum of polynomials over (Z ). Then m(t) is just
c(ux ,uy ) mod `.

9/13



0.

???

Let X (x ,y) = a+bx + cy . Much of the time the polynomials b and
c will be mutually prime. In this case let u,v be such that
ub+ vc =−a in Rq. Then

X (x +u,y + v) = a+b(x +u) + c(y + v) = bx + cy

and therefore (recall ` = 4)

c(x +u,y +v) = m(t)+(bx +cy)r(x +u,y +v)+4 ·e(x +u,y +v).

Therefore the “constant” term of c(x ,y) is m(t) plus the “constant”
term of 4 · e(x +u,y + v).

10/13



0.

???

Thus, having oracle access to encryptions of a chosen message
allows you to sample from a distribution m(t) + 4α, where m(t) is
fixed and α is a random polynomial in Rq.
For any coefficient mi of m(t), the oracle allows you to sample
(mi + 4θ) mod q where θ is a random integer modulo q. Since q is
not divisible by 4, the distribution of (mi + 4θ) mod q is not
uniform.
I think each mi in {0,1,2,3} gives you a different distribution.
Therefore you can determine mi by sampling enough times (some
function of q).

11/13



0.

Sizes

Sizes in bytes (` = 4 , deg(X(x,y)) = deg(r(x,y)) = 1):

Level Secret Key Public Key Ciphertext

I 600 14412 28824

III 866 20796 41592

V 1133 27204 54408

12/13



0.

Performance

Performance (in Megacycles) on Xeon E5-1620 3.6GHz.

Level keygen encrypt decrypt

I 92 178 335

III 160 378 716

V 239 626 1186

Optimized implementations do about 20% better.

13/13


	Title
	The Giophantus proposal
	The public key 
	The public key 
	Parameters
	Private key 
	Connecting the private key and the public key 
	Encryption 
	Decryption 
	???
	???
	Sizes
	Performance


