The Giophantus proposal

Rene Peralta ${ }^{1}$
${ }^{1}$ National Institute of Standards and Technology (Gaithersburg, USA)
NIST-internal PQC meeting September $11^{\text {th }}, 2018$ (Gaithersburg, USA)

The Giophantus proposal

Highlights:

- A public-key encryption scheme.
- Security based on the hardness of finding low-weight solutions to certain indeterminate equations.
- Original system proposed around 2006 and broken around 2010, this has a "fix" to cover known attacks.
- Most of the action happens in a quotient ring

$$
R_{q}=F_{q}[t] /\left(t^{n}-1\right) .
$$

- Uses bivariate polynomials (linear and quadratic, as far as I can tell) over R_{q}.

The public key

$$
X(x, y)=a_{00}+a_{01} x+a_{10} y
$$

The public key

$$
X(x, y)=a_{00}+a_{01} x+a_{10} y
$$

$$
a_{i, j}=t^{n-1}+\ldots+431 t+22
$$

Parameters

Parameters:

- ℓ is a small integer (proposed value is 4).
- q a prime (around 2^{30}).
- n the number of terms in polynomials in t (around 2000).

Private key

- The private key is a pair of polynomials

$$
u_{x}(t), u_{y}(t)
$$

of degree $n-1$ and coefficients in $\{0,1,2,3\}$;

- These are picked at random, so I think you can just store the seed to a prng.

Connecting the private key and the public key

- In the public key

$$
X(x, y)=a_{00}(t)+a_{01}(t) x+a_{10}(t) y
$$

- the polynomials $a_{01}(t)$ and $a_{10}(t)$ are chosen at random in R_{q};

$$
a_{00}(t)=-\left(a_{01}(t) u_{x}(t)+a_{10}(t) u_{y}(t)\right) \in R_{q} ;
$$

- so

$$
X\left(u_{x}(t), u_{y}(t)\right)=0 .
$$

Encryption

- Message (in hex) is the coefficients of a polynomial $m(t)$ of degree $n-1$.
- Pick random polynomials $r_{i j}$ in R_{q}. Let

$$
r(x, y)=r_{00}(t)+r_{01}(t) x+r_{10}(t) y
$$

- Pick random (noise) polynomials $e_{i j}$ of degree $n-1$ and coefficients in $\{0,1,2,3\}$. Let

$$
e(x, y)=e_{00}(t)+e_{01}(t) x+e_{10}(t) y+e_{11}(t) x y+e_{02}(t) x^{2}+e_{20}(t) y^{2}
$$

- Ciphertext is

$$
c(x, y)=m(t)+X(x, y) r(x, y)+\ell \cdot e(x, y)
$$

Decryption

- Evaluate $c(x, y)$ at $\left(u_{x}(t), u_{y}(t)\right)$:

$$
c(x, y)=m(t)+X(x, y) r(x, y)+\ell \cdot e(x, y)
$$

Decryption

- Evaluate $c(x, y)$ at $\left(u_{x}(t), u_{y}(t)\right)$:

$$
c(x, y)=m(t)+X(x, y) r(x, y)+\ell \cdot e(x, y)
$$

- $c\left(u_{x}, u_{y}\right)=m(t)+X\left(u_{x}, u_{y}\right) r\left(u_{x}, u_{y}\right)+\ell \cdot e\left(u_{x}, u_{y}\right)$.
- $c\left(u_{x}, u_{y}\right)=m(t)+\ell \cdot e\left(u_{x}, u_{y}\right)$.

Decryption

- Evaluate $c(x, y)$ at $\left(u_{x}(t), u_{y}(t)\right)$:

$$
c(x, y)=m(t)+X(x, y) r(x, y)+\ell \cdot e(x, y)
$$

- $c\left(u_{x}, u_{y}\right)=m(t)+X\left(u_{x}, u_{y}\right) r\left(u_{x}, u_{y}\right)+\ell \cdot e\left(u_{x}, u_{y}\right)$.
- $c\left(u_{x}, u_{y}\right)=m(t)+\ell \cdot e\left(u_{x}, u_{y}\right)$.
- The coefficients of both summands are less than q. So you can view this as a sum of polynomials over (Z). Then $m(t)$ is just $c\left(u_{x}, u_{y}\right) \bmod \ell$.

Let $X(x, y)=a+b x+c y$. Much of the time the polynomials b and c will be mutually prime. In this case let u, v be such that $u b+v c=-a$ in R_{q}. Then

$$
X(x+u, y+v)=a+b(x+u)+c(y+v)=b x+c y
$$

and therefore (recall $\ell=4$)
$c(x+u, y+v)=m(t)+(b x+c y) r(x+u, y+v)+4 \cdot e(x+u, y+v)$.
Therefore the "constant" term of $c(x, y)$ is $m(t)$ plus the "constant" term of $4 \cdot e(x+u, y+v)$.

Thus, having oracle access to encryptions of a chosen message allows you to sample from a distribution $m(t)+4 \alpha$, where $m(t)$ is fixed and α is a random polynomial in R_{q}.
For any coefficient m_{i} of $m(t)$, the oracle allows you to sample $\left(m_{i}+4 \theta\right) \bmod q$ where θ is a random integer modulo q. Since q is not divisible by 4 , the distribution of $\left(m_{i}+4 \theta\right) \bmod q$ is not uniform.
I think each m_{i} in $\{0,1,2,3\}$ gives you a different distribution.
Therefore you can determine m_{i} by sampling enough times (some function of q).

Sizes

Sizes in bytes $(\ell=4, \operatorname{deg}(X(x, y))=\operatorname{deg}(r(x, y))=1)$:

Level	Secret Key	Public Key	Ciphertext
I	600	14412	28824
III	866	20796	41592
V	1133	27204	54408

Performance

Performance (in Megacycles) on Xeon E5-1620 3.6GHz.

Level	keygen	encrypt	decrypt
I	92	178	335
III	160	378	716
V	239	626	1186

Optimized implementations do about 20% better.

